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ABSTRACT  

The aim of this paper is to present the over view of Partial Differential Equations and also 

discuss how concept of  Partial Differential Equations is used in decomposition of organic matter in 

3d soil structure.  
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INTRODUCTION 

  In mathematics a differential equation is an equation that relates one or more functions and 

their  derivatives. In applications the functions generally represent physical quantities, the derivatives 

represent their rates of change, and the differential equation defines a relationship between are the two 

such relations common; therefore, differential equation play a prominent role in many disciplines. 

Including Engineering, Physics, Economics and Biology. Differential equations are of two types are 

Ordinary Differential Equations and Partial Differential Equations.   

 A Partial differential equation is a mathematical equation that involves two or more 

independent variables an unknown functions (dependent on their variables) and partial derivatives of 

the unknown function with respect to the independent variables. 

 

PARTIAL DIFFERENTIAL EQUATIONS 

In Mathematics, a partial differential equation is one of the types of differential equations, in 

which the equation contains unknown multi variables with their partial derivatives. It is a special case 

of an ordinary differential equation. We are going to discuss what is a partial differential equation, 

how to represent it, its classification and type with more examples and solved problems. 

              A partial Differential Equation commonly denoted as PDE is a differential equation 

containing partial derivatives the dependent variable with more than one independent variable. A PDE 

for a function u(x1 , x2 , . . . . . , xn) is an equation of the form 

                         f (x1, … … xn; u, (
∂u

∂x
) , … . , (

∂u

∂xn   
) ;  (

∂2u

∂x1 ∂x1
) , … … . . ,

∂2u

∂x1 ∂xn
, … ) = 0 

                The PDE is said to be linear if f is a linear function of u and its derivatives .The simple 

PDE is given by:  
∂u

∂x
(x, y) = 0 

  The above relation implies that the function u(x, y) is independent of X which is the reduced 

form of partial differential equation formula stated above. The order of PDE is the of the highest 

derivative term of the equation. 

 REPRESENTATION OF PARTIAL DIFFERENTIAL EQUATIONS: 

                  In PDEs we denote the partial derivatives using subscripts, such as : 

ux =
∂u

∂x
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uxx =  
∂2u

∂x2 
 

                                                                                   uxy  =
∂2u

∂y ∂x
=

∂

∂y
 (

∂u

∂x
)  

In some cases, like in physics when we learn about wave equations or sound equation, partial 

derivative ∂, is also represented by ∇. (dell or nabla). 

CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS 

  Each type of PDE has certain functionalities that help to determine whether a particular finite 

element approach is appropriate to the problem being described by the PDE. The solution depends on 

the equation and several variables contain partial derivatives with respect to the variables. There are 

three types of second order PDEs in mechanics they are 

• Elliptic PDE 

• Parabolic PDE 

• Hyperbolic PDE 

Consider the example, 

                                          auxx   + buyy  + cuyy  = 0 , u = u(x, y) 

                For a given point (x, y), the equation is said to be elliptic if b²-ac<0 which are used to describe 

the equations of elasticity without inertial terms. Hyperbolic PDEs describe the phenomena of wave 

propagation if it satisfies the condition b2  − ac = 0. The heat conduction equation is an example of a 

parabolic PDE. 

TYPES OF PARTIAL DIFFERENTIAL EQUATION 

               The different types of partial differential equation are, 

• First-order partial differential equation 

• Linear partial differential equation 

• Quasi-linear Partial differential equation 

• Homogenous partial differential equation 

 

TYPES OF PDES 

FIRST-ORDER PARTIAL DIFFERENTIAL EQUATION  

               In maths, when we speak about the first-order partial differential equation, then the 

equation has only the first derivative of the unknown function having 'm' variables. It is expressed in 

the form of 

F(X1, … … . , Xm, u, uX1 , … … . . , uXm ) = 0 

LINEAR PARTIAL DIFFERENTIAL EQUATION 

                  If the dependent variable  and all its partial derivatives occur linearly in any PDE then such 

an equation is called linear PDE otherwise a nonlinear PDE.  

QUASI-LINEAR PARTIAL DIFFERENTIAL EQUATION 

                 A PDE is said to be quasi-linear if all the terms with the highest order derivative all of 

dependent variable occur linearly, that is the coefficient of those terms are functions of only lower - 

order derivatives of the dependent variables.  

HOMOGENEOUS PARTIAL DIFFERENTIAL EQUATION 

             If all the terms of a PDE contain the dependent variable or its partial derivatives. Then such a  

PDE IS called non-homogeneous partial differential equation or homogeneous otherwise.  

PARTIAL DIFFERENTIAL EQUATION EXAMPLES 

              Some of the examples which follow second-order PDE is given as 

1. 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0 

2. 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 

3. 𝑢𝑥
𝜕2𝑢

𝜕𝑥2 + 𝑢2 𝑥𝑦
𝜕2𝑢

 𝜕𝑥𝜕𝑦
+ 𝑢𝑦

𝜕2𝑢

𝜕𝑦2 + (
𝜕𝑢

(𝜕𝑥)
)2 + (

𝜕𝑢

𝜕𝑦
)2 + 𝑢3 = 0 
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4. 
𝜕2𝑢

𝜕𝑥2  
+ (

𝜕2𝑢

𝜕𝑥𝜕𝑦
) +

𝜕2𝑢

𝜕𝑦2
= 𝑥2  + 𝑦2 

 

APPLICATION TO DECOMPOSITION OF ORGANIC MATTER IN 3D SOIL 

STRUCTURE  

INTRODUCTION 

                      Soil organic matter decomposition is a complex ecological process controlled by the 

nature of organic matter, the dynamic of microorganisms and the environmental conditions, all in inter 

action with a heterogeneous structured media. The majority of organic matter models make the 

assumption that carbon limitation is controlled only by the intrinsic degradability of organic matter. 

Few of them take also into account the rule of exoenzymes produced by microorganisms to convert 

complex substrates into available compounds. However, most of organic matter models do not 

consider the physical heterogeneity that controlled partly the availability of organic matter 

microorganisms. Recent models simulate the diffusion in soil of soluble carbon substrate in 2D or ID. 

Some attend were also made to simulate enzyme diffusion in artificial structured environments. 

However none of these models consider explicitly the real soil structure. The new model of simulates 

the decomposition of organic matter at the microscale using computer tomography images of real soil 

but it does not take into account the diffusion process of exoenzymes and dissolved organic matter. 

                     Models available in literature that simulate the biological activity in porous media use 

different techniques like cellular automata to simulate biomass growth in biofilms, Partial Differential 

Equations (PDE) to simulate biomass recycling in fungal colonies , multi-agent system to simulate the 

impact of earthworms on soil structure . In this work we focus on the PDE method because the recent 

increase performances of computer PDE solvers makes now possible to simulate more and more 

complex systems. This paper deals with the application of PDE to simulate organic matter degradation 

in real micro 3D structures taking into account also exoenzymes production and diffusion. We tested 

our method using high resolution 3D Computed Tomography (CT) of real soil images. Our work faces 

the problem of solving a nonlinear PDE system (reaction-diffusion) in a non 3D regular mesh. 

                    In the first sections, the paper presents the model of soil organic matter decay using PDE 

system. The PDE system is formed by reaction diffusion equations. The approximation of the model 

weak solutions is found by using finite element method and a Newton algorithm. We implement the 

resolution algorithm by using Freefem3d software. In the last section, the sensitivity of the model 

according to the dissolved organic matter diffusion and the impact of biological elements distributions 

in pore space are analyzed using 3D Computed Tomography(CT) image of a real soil sample. 

 

STATEMENT OF THE MODELING PROBLEM 

 Our aim is to simulate biological activity in a non regular 3D geometric space. 

                 As specific case study, we deal with microbial decomposition of organic matter in soil. For 

instance, in this case pore space is described by a set of voxels (cubes) obtained by thresholding a soil 

sample 3D CT image. Therefore, we take as input data: 

• 3D Computed Tomography (CT) image of soil sample providing a set of voxels forming pore space  

• Parameters describing the initial spatial distribution of elements involved in biological activity  

             -micro-organisms (MB)  

             -dissolved organic matter (DOM) 

             -fresh organic matter (FOM) 

             -soil organic matter(SOM) 

             -enzymes (ENZ) 

             -inorganic organic matter (CO2) 

              Thus, we assume classically that the microbial decomposition process involves six biological 

elements noted MB, FOM, SOM, DOM, ENZ and CO2. We denote MB the micro-organisms secreting 

enzymes (ENZ). Enzymes decompose organic matters by diffusing through water paths in the pore 

space. FOM (Fresh Organic Matter) is a kind of organic matter whose decomposition by enzymes is 
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fast, while SOM (Soil Organic Matter) decomposition is slower. DOM (Dissolved Organic Matter) 

comes from SOM and FOM decomposition. It diffuses through water path to be consumed by MB for 

their maintenance and growth. It is supposed that MB do not move, so we assume that their diffusion 

coefficient is very small. Deteriorated enzymes and dead MB are transformed into SOM and DOM. 

MB breath by producing inorganic carbon (C02). The output of the simulation system is for each step 

time the precise distribution of biological activity parameters i.e.: 

• MB density 

• DOM density 

• FOM density 

• SOM density 

• ENZ density 

• CO2 density 

    Thus, we provide a kind of animated film showing spatially the evolution of biological dynamics 

characteristics. From these information, we can of course easily compute the classical global evolution 

curves: CO2 content, DOM content, MB content. 

MODELING BIOLOGICAL DYNAMICS USING PDE: APPLICATION TO SOIL 

MICROBIAL DECOMPOSITION  

 MODEL MATHEMATICAL VARIABLES  

                      Let Ω ∁ 𝑅3 be the domain representing the soil pore space. Let 𝑡 ≥ 0 be a given time and 

𝑥 = (𝑥1, 𝑥2, 𝑥3)𝑡𝜖 Ω  be a point of the pore space. Mathematical variables used to model the biological 

process are : 

• 𝑏(𝑥, 𝑡): 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜 − 𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑠 (𝑀𝐵), 
• 𝑛(𝑥, 𝑡): 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐷𝑂𝑀, 
• 𝑚1(𝑥, 𝑡): 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑆𝑂𝑀,  
• 𝑚2(𝑥, 𝑡): 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐹𝑂𝑀,  
• 𝑒(𝑥, 𝑡): 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑒𝑛𝑥𝑦𝑚𝑒𝑠 𝑎𝑛𝑑  
• 𝑐(𝑥, 𝑡): 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜2 

We point out that x denote a vector of 𝑅3 representing the coordinates of a point in the 3D affine 

space. 

PARTIAL DIFFERENTIAL EQUATIONS RULING MODEL VARIABLES  

 MICRO-ORGANISMS (MB)  

                     Let V be an elementary volume in Ω . The variation of the quantity of microbial 

decomposers (MB) in v is due to : 

• Micro-organisms diffusion,  

• Micro-organisms growth, 

• Micro-organisms mortality, 

• Micro-organisms breathing, 

• Enzymes production. 

                    Thus during the breathing and the enzymes production , microbial decomposers lose a 

part of their masses. The following equation summarizes the process. 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏 = 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑜𝑓 𝑏 + 𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 𝑏 − 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦, 𝑏𝑟𝑒𝑎𝑡ℎ𝑖𝑛𝑔 𝑒𝑛𝑧𝑦𝑚𝑒𝑠  
             We assume that the microbial decomposers (MB) growth depends on the quantity of 

dissolved organic matter. Indeed, the micro-organisms (MB) consumed the dissolved organic matter 

which is provide by the decomposition of organic matter (FOM,SOM.....) by enzymes , we use the 

Monod equation: 
𝜕𝑏

𝜕𝑡
=

𝐾𝑛

𝐾𝑏 + 𝑛
𝑏 , 

where the variables are set as follows: 

   𝑏: 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑟𝑠 

   𝐾: 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒   
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    𝑘𝑏: ℎ𝑎𝑙𝑓 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

    𝑛: 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒𝑑 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟. 
The above equation describes microbial decomposers growth rate. Thus, the variation of b is 

expressed by the following equation: 
𝜕𝑏

𝜕𝑡
= 𝐷𝑏∆𝑏 + (

𝑘𝑛

𝑘𝑏 + 𝑛
− 𝜇 − 𝑟 − 𝑣) 𝑏 

where 𝐷𝑏 represents the microbial decomposers diffusion coefficient, 𝜇 is to the mortality 

rate , r  is set to the breathing rate and 𝑣 represents the enzymes production rate. 

 

DISSOLVED ORGANIC MATTER: (DOM) 

DOM density variation comes from: 

• DOM diffusion 

• Consumption of DOM by microbial decomposers 

• SOM and FOM transformation by enzymes into DOM 

• Microbial decomposers mortality (dead micro-organisms become partly DOM and partly SOM) 

• Enzymes degradation (enzymes become partly DOM and partly SOM) 

Thus , the following equation summarizes DOM density variation process: 

            Variation of n = diffusion of n + transformation of 𝑚1, 𝑚2 + 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑏 

                                         −𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 𝑏(consumption ) + degradation of e 

We assume that SOM and FOM transformation rate into DOM is a growing function of enzymes 

density. So we use the following equation to express organic matter transformation rate: 

  
 𝜕𝑚

𝜕𝑡
=

𝑐𝑒

𝑘𝑚 + 𝑒
𝑚 

Where: 

C  is the maximal transformation rate 

 e represents enzymes concentration 

Organic matter concentration is noted m 

 𝑘𝑚 represents the half-saturation constant. 

         DOM variation is ruled by the following equation: 
𝜕𝑛

(𝜕𝑡)
= 𝐷𝑛∆𝑛 +

𝑒

𝑘𝑚 + 𝑒
(𝑐1𝑚1 + 𝑐2𝑚2) −

𝑘𝑛

𝑘𝑏 + 𝑛
𝑏 + 𝛼1𝑒 + 𝛼2(𝜇)𝑏, 

where 𝐷𝑛  represents DOM diffusion coefficient.𝑐1  and 𝑐2  represent respectively SOM and FOM 

maximal transformation rate. 𝛼1(C) represents the transformation rate of deteriorated enzymes into 

DOM. 𝛼2(𝜇) is the transformation rate of dead microbial decomposers (MB) into DOM. 

SOIL ORGANIC MATTER: (SOM) 

               SOM quantity variation comes from the transformation of a part of SOM into DOM, by 

enzymes degradation and by MB mortality. 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚1 = −𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚1 + 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒 + 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑏 

Thus, SOM quantity variation is expressed by the following equation: 
𝜕𝑚1

𝜕𝑡
= −

𝑐1𝑒

𝑘𝑚 + 𝑒
𝑚1 + (1 − 𝛼1(𝑐))𝑒 + (1 − 𝛼2(𝜇))𝑏. 

where 1-𝛼1 (C) is the rate of deteriorated ENZ transformed into SOM and 1-𝛼2(𝜇) is the rate 

of dead MB transformed into SOM. 

FRESH ORGANIC MATTER: (FOM) 

                FOM quantity variation is caused by its transformation by enzymes into DOM as follows: 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚2 = −𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚2 

                FOM quantity variation is expressed by the following equation: 
𝜕𝑚2

𝜕𝑡
= −

𝑐2𝑒

𝑘𝑚 + 𝑒
𝑚2 
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ENZYMES (ENZ) 

                   Enzymes quantity variation is due to the enzymes production by microbial decomposers 

(MB), the enzymes diffusion, and the enzymes degradation: 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒 = 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑜𝑓 𝑒 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒 − 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒 

The above scheme is expressed by the following equation: 
𝜕𝑒

𝜕𝑡
= 𝐷𝑒∆𝑒 + 𝑣𝑏 − ∁𝑒 

         where 𝐷𝑒, is the enzymes diffusion coefficient, ∁ represents the enzymes degradation rate. 

 INORGANIC CARBON : (CO2) 

                  Inorganic carbon (CO2) variation is due to its diffusion and to its production by microbial 

decomposers (MB) during breathing. 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐 = 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐. 
The CO2 evolution equation is : 

𝜕𝑐

𝜕𝑡
= 𝐷𝑐∆𝑐 + 𝑟𝑏1 

Where 𝐷𝑐 is set to the CO2 diffusion coefficient. 

 BOUNDRY  CONDITIONS  FOR MODEL VARIABLES 

                  On the border of Ω noted 𝜕Ω  , we use the Neumann boundary conditions. It means that 

flow is null on 𝜕Ω for all variables. 

FORMING PARTIAL  DIFFERENTIAL EQUATIONS (PDE) SYSTEM  

                   In this section we use the above equations describing variables variations to set a global 

PDE system modeling biological dynamics. Let T> 0 be a fixed time and let's define 

                                                           Ω𝑇 = Ω × (0, 𝑇). 
                  Therefore, the whole system of partial differential equations governing the biological 

model becomes in Ω𝑇 ∶ 
𝜕𝑏

 𝜕𝑡
= 𝐷𝑏∆𝑏 + (

𝑘𝑛

𝑘𝑏 + 𝑛
− 𝜇 − 𝑟 − 𝑣) 𝑏, 

  
𝜕𝑛

𝜕𝑡
= 𝐷𝑛∆𝑛 +

𝑒

𝑘𝑚+𝑒
(𝑐1𝑚1+𝑐2𝑚2) −

𝑘𝑛

𝑘𝑏+𝑛
𝑏 + 𝛼1(∁)𝑒 + 𝛼2(𝜇)𝑏,   

 
𝜕𝑚1

𝜕𝑡
= −

𝑐1𝑒

𝑘𝑚+𝑒
𝑚1 + (1 − 𝛼1(∁)𝑒 + (1 − 𝛼2(𝜇))𝑏, 

 
 𝜕𝑚2

𝜕𝑡
= −

𝑐2𝑒

𝑘𝑚+𝑒
𝑚2, 

  
𝜕𝑒

𝜕𝑡
= 𝐷𝑒∆𝑒 + 𝑣𝑏 − ∁𝑒,    

𝜕𝑐

𝜕𝑡
= 𝐷𝑐∆𝑐 + 𝑟𝑏 

We use neumann homogeneous boundary conditions and the following initial conditions in Ω: 

• 𝑏0(𝑥) for MB, 

• 𝑛0(𝑥) for DOM. 

• 𝑚10(𝑥) for SOM, 

• 𝑚20(𝑥) for FOM, 

• 𝑒0(𝑥) for ENZ, 

• 𝑐0(𝑥) for CO2. 

                Therefore, the above PDE system describes precisely microbial decomposition of organic 

matter in soil. In the following section, we show how to solve this PDE system which allows to 

practically simulate soil biological activity. 

NUMERICAL RESOLUTION OF THE PDE SYSTEM (model): Soil biological dynamics 

simulation 

 PDE VECTORIAL SYSTEM FORMULATION 

                   We simplify the system writing by transforming it into a vector form. Let's define vectors 

the following way: 

𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6)𝑡 
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  = (𝑏, 𝑛, 𝑚1, 𝑚2, 𝑒, 𝑐)𝑡       

𝑢0 = (𝑏0𝑛0𝑚10𝑚20𝑒0𝑐0)𝑇 

The diffusion coefficients matrix D is defined as follows: 

The reaction terms of equations are represented by functions 𝐹𝑖 , 𝑖 = 1,2, … . ,6  defined as follows: 

• 𝐹1(𝑢) = (
𝐾𝑢2

𝐾𝑠+𝑢2
− 𝜇 − 𝑟 − 𝑣) 𝑢1,              

• 𝐹2(𝑢) =
𝐾𝑢5

𝐾𝑚+𝑢5
(𝑐1𝑚1 + 𝑐2𝑚2) −

𝐾𝑢2

𝑘𝑠+𝑢2
𝑢1 + 𝛼1(∁)𝑢5 + 𝛼2(𝜇)𝑢1,       

• 𝐹3(𝑢) =
𝑐1𝑢5

𝐾𝑚+𝑢5
𝑢3 + (1 − 𝛼1(∁))𝑢5 + (1 − 𝛼2(∁))𝑢1,   

• 𝐹4(𝑢) = −
𝑐1𝑢5

𝐾𝑚+𝑢5
𝑢4,  

• 𝐹5(𝑢) = 𝑣𝑢1 − ∁𝑢5,   
• 𝐹6(𝑢) = 𝑟𝑢1. 
Let's define the vector function F such that 

                        𝐹(𝑢) = (𝐹1(𝑢), 𝐹2(𝑢), 𝐹3(𝑢), 𝐹4(𝑢), 𝐹5(𝑢), 𝐹6(𝑢))𝑇 

The vector form of the system is 

                                                                        {𝜕𝑡𝑢 = 𝑑𝑖𝑣(𝐷𝛻𝑢) + 𝐹(𝑢)           𝑖𝑛  Ω𝑇 , 

  
𝜕𝑢

𝜕𝑡
= 0    𝑜𝑛  𝜕Ω ×]0, 𝑇[,  

 𝑢(𝑡 = 0) = 𝑢0  𝑖𝑛 Ω. 
SYSTEM VARIATIONAL FORMULATION 

 Let's introduce the following Sobolev space 

𝑉 = {𝑣 ∈ (𝐻1(Ω))  ∶  
𝜕𝑢

𝜕𝑛
= 0  𝑠𝑢𝑟 𝜕Ω} .  

Assuming that the data are sufficiently regular , the variational  formulation consist in finding a 

function u(t)∈ 𝑉 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∶ 

∫
𝜕𝑢

𝜕𝑡
𝑣𝑑𝑥 + ∫ 𝐷𝛻𝑢𝛻𝑣𝑑𝑥 = ∫ 𝐹(𝑢)𝑣𝑑𝑥           ∀𝑣 ∈ 𝑉

.

Ω

.

Ω

.

Ω

 

After building a mesh Ωℎ of domain  Ω we solve variational formulation consists in  the following 

discrete space: 

𝑉ℎ = {𝑣 ∈ (𝐶(Ω))
6

∶  ∀𝐾 ∈ Ωℎ  (𝑣|𝑘 ∈ 𝑃1)6} 

RESOLUTION SCHEME OF THE VARIATIONAL SYSTEM 

NUMERICAL SCHEME  

The numerical resolution of the problem is divided into three steps: 

STEP 1:   we discretize the problem via finite element method in the finite dimensional space 𝑉𝑘. The 

problem consists in solving the following system                                            

                                                    
 𝜕𝑈

𝜕𝑡
+ 𝐵𝑈 = 𝐹(𝑈). 

Where  

𝐵𝑖,𝑗 =  ∫ 𝐷𝛻∅𝑖
𝛻∅𝑗

𝑑𝑥     ∀𝑖, 𝑗 = 1,2, … . , 𝑁𝑑𝑜𝑓.
.

Ω

   

And     

 𝐹(𝑈)𝑖 = ∫ 𝐹𝑖

.

Ω

(𝑈)∅𝑖𝑑𝑥            ∀𝑖 = 1,2, … . . , 𝑁𝑑𝑜𝑓.  

N dof is the number of freedom degrees. 

The sequence (∅𝑖)1 ≤ 𝑖 ≤ 𝑁 𝑑𝑜𝑓 𝑑𝑒𝑓𝑖𝑛𝑒𝑠 the basis of the space 𝑉ℎ. 
STEP 2:  we use implicit scheme to discritize time. 

Let 𝑁𝑡 𝑏𝑒 a positive integer denoting the number of time steps. 

We call the step time      𝛿𝑡 =
𝑇

𝑁𝑡
 . 

The numerical scheme is : 
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𝑈𝑛−𝑈𝑛−1

𝛿𝑡
+ 𝐵𝑈𝑛 = 𝐹(𝑈𝑛),           𝑛 ∈ 𝑁∗ 

Which can be as follows : 

(𝐼 + 𝛿𝑡 𝐵)𝑈𝑛 = 𝑈𝑛−1 + 𝛿𝑡𝐹(𝑈𝑛),          𝑛 ∈ 𝑁∗ 

Where: 

I is the identity matrix 

𝑈𝑛  is the solution at time n*𝛿𝑡. 
STEP 3 :  We linearize the function F(𝑈𝑛). We ignore 𝑈𝑛 at the time n*𝛿𝑡 . Therefore , we note 𝑈∗ 

the approximation of 𝑈𝑛 and 𝛿𝑈 the correction term. We obtain : 

𝑈𝑛 = 𝑈∗ + 𝛿𝑈, 
So the numerical scheme becomes: 

(𝐼 + 𝛿𝑡 𝐵)𝛿𝑈 = 𝑈𝑛−1 − 𝑈∗ + 𝛿𝑡(𝐹(𝑈𝑛) − 𝐵𝑈∗). 
We consider the following approximation : 

𝐹(𝑈𝑛) ≅ 𝐹(𝑈∗). 
The numerical scheme becomes: 

(𝐼 + 𝛿𝑡 𝐵)𝛿𝑈 = 𝑈𝑛−1 − 𝑈∗ + 𝛿𝑡(𝐹(𝑈∗) − 𝐵𝑈∗). 
RESOLUTION ALGORITHM: 

                From the initial conditions, we know  𝑈0 . Then in order to find solution 𝑈𝑛  knowing 

𝑈𝑛−1,we initialize 𝑈∗ 𝑡𝑜 𝑈𝑛−1. Afterwards, we repeat the numerical scheme by replacing the term 

𝑈∗by   𝑈∗ ← 𝑈∗ + 𝛿𝑈 after each iteration. Two stopping criteria are defined: 

• We define a maximal number of iterations called N max 

• We define a very small positive real ∈𝑎and we stop the loop if the norm of 𝛿U is smaller than 𝜖𝑎  

When one of the stopping criteria is satisfied, 𝑈∗ represents the searched solution. Thus, the resolution 

algorithm can be described as follows: 

1. N max and 𝜖𝑎 are fixed. 

2.  𝑛 ≥ 1, 𝑈𝑛−1 is known. 

         (a) 𝑈∗ ← 𝑈𝑛−1, 
         (b) The beginning of the loop for linearization 

1. Solve     (1 +  𝛿𝑡𝐵)𝛿𝑈 = 𝑈𝑛−1 − 𝑈∗ + 𝛿𝑡(𝐹(𝑈∗) − 𝐵𝑈∗),  
2. Update            𝑈∗ ← 𝑈∗ + 𝛿𝑈, 
3. If the condition on 𝜖𝑎 or Nmaz is satisfied, the loop is stopped. (c) 𝑈𝑛 ← 𝑈∗ 

                 We give in annex 7 the Freefem3d code we implement for solving the system. In many 

practical cases, pore space is described by a too high number of voxels to provide reasonable 

computing and memory costs to solve the system. To tackle this problem, we use an octree data 

structure for describing pore space. We give in annex 8 the practical implementation in code C++. 

 

EXPERIMENTAL RESULTS USING 3D CT SOIL IMAGES : NUMERICAL 

SIMULATIONS 

SOIL SAMPLE AND PARAMETERS 

The soil columns were scanned by means of a high resolution micro-CT machine (SIMCT Equipment: 

SIMBIOS, University of Abertay Dundee, Scotland) operating at 90KeV and a current of 112mA. The 

soil is sampled in the surface layer (0-20cm) of an agricultural field at the INRA experimental site of 

Feucherolles (FEU) (50km west of Paris) in France. It is a loamy soil typic hapludalf (15% clay, 78% 

loam and 7% sand). We use 3D Computed Tomography (CT) image of a soil sample having the 

following resolution: 63𝜇𝑚  x 63m𝜇  x 63𝜇m. The size of the image used for the simulations is 

256x256x256 voxels that corresponds to 16128𝜇mx 16128𝜇m x 16128𝜇m. The size of our sample is 

about 4𝑐𝑚3 . We obtain pore space by thresholding CT image using  When a voxel gray level is less 

than a given threshold, it is assumed to belong to pore space. The pore space forms 34% of the soil 

sample and is totally filled with water. In order to reduce the number of voxels, we apply the octree 

method up to the level 3 of the octree structure. 
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                   Same as in real conditions, we initially introduce 2.5gC/kg of dry soil for DOM in a soil 

containing 250mgC/kg soil of microorganisms. In our sample of 4cm, we introduce 10000μg of 

carbon-DOM for 1000µg of carbon-MB initially contained in the soil. For the following experiments, 

we assume that at the initial time, there is only microorganisms MB and dissolved organic matter 

DOM. MB do not produce enzymes ENZ (n equals 0) and dead MB are transformed into SOM but not 

into DOM (α2 equals 0). 

                     The maximal growth rate of microorganisms k, the mortality rate m and the breathing 

rate r were set respectively to the values of 0.7day−1, 0.001day−1 and 0.02day−1 taken in Monga et 

al (2008). The half saturation constant K₁ were taken in Ingwersen et al., (2008) with the value of 

0.264mgCg-¹.  

                     In the following simulations, the soil is saturated of water. In real conditions the saturation 

may lead to anaerobic process. Indeed, Hojberg et al. (1994) showed that oxygen can diffuse only until 

millimeters inside saturated aggregates. If we assume that our sample, whose larger dimension was 

16mm, was surrounded by air-filled pores, the oxygen may penetrate inside. by the saturated pores. 

We found also large pores with diameter higher than 500μm in the sample (see figure 4). In our 

simulations, we assume aerobic conditions for decomposition. In future version of the model, we will 

add oxygen consumption.  

 

CONCLUSION  

                 In this paper we have discussed about partial differential equation and classifications, types 

of partial differential equations and also, in this study we proposed a new model of organic matter 

decomposition in the soil pores. The novelties of our approach are to consider the real 3D 

microstructures of soil, to take into account for enzyme production/diffusion and to simulate 

accessibility of dissolved organic matter to microorganisms. We applied our model to real CT images 

of soil in which we add realistic amount of organic matter and microorganisms. Sensitivity analysis of 

the model to distance between microorganisms and organic matter shows the impact of pore 

connectivity in the decomposition process that would not easily to visible without our 3D approach. 

In future studies, simulations with real experimental data will be carried out with our model in order 

to analyse microbial competition of degradation under different water contents. 
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